We introduce LongCat-Image, a pioneering open-source and bilingual (Chinese-English) foundation model for image generation, designed to address core challenges in multilingual text rendering, photorealism, deployment efficiency, and developer accessibility prevalent in current leading models.
Clone the repo:
git clone --single-branch --branch main https://github.com/meituan-longcat/LongCat-Image cd LongCat-Image
Install dependencies:
# create conda environment
conda create -n longcat-image python=3.10
conda activate longcat-image
# install other requirements
pip install -r requirements.txt
python setup.py develop
💡 Tip: Using a stronger LLM model for prompt engineering can further improve image generation quality. Please refer to inference_t2i.py for detailed usage.
import torch from transformers import AutoProcessor from longcat_image.models import LongCatImageTransformer2DModel from longcat_image.pipelines import LongCatImagePipeline device = torch.device('cuda') checkpoint_dir = './weights/LongCat-Image' text_processor = AutoProcessor.from_pretrained( checkpoint_dir, subfolder = 'tokenizer' ) transformer = LongCatImageTransformer2DModel.from_pretrained( checkpoint_dir , subfolder = 'transformer', torch_dtype=torch.bfloat16, use_safetensors=True).to(device) pipe = LongCatImagePipeline.from_pretrained( checkpoint_dir, transformer=transformer, text_processor=text_processor ) pipe.to(device, torch.bfloat16) prompt = '一个年轻的亚裔女性,身穿黄色针织衫,搭配白色项链。她的双手放在膝盖上,表情恬静。背景是一堵粗糙的砖墙,午后的阳光温暖地洒在她身上,营造出一种宁静而温馨的氛围。镜头采用中距离视角,突出她的神态和服饰的细节。光线柔和地打在她的脸上,强调她的五官和饰品的质感,增加画面的层次感与亲和力。整个画面构图简洁,砖墙的纹理与阳光的光影效果相得益彰,突显出人物的优雅与从容。' image = pipe( prompt, height=768, width=1344, guidance_scale=4.5, num_inference_steps=50, num_images_per_prompt=1, generator=torch.Generator("cpu").manual_seed(43), enable_cfg_renorm=True, enable_prompt_rewrite=True # Reusing the text encoder as a built-in prompt rewriter ).images[0] image.save('./t2i_example.png')